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The main body of the comments is divided into 7 sections followed by two
appendices which complement the discussion contained in section 3 (as regards
the strong law of large numbers) and that in section 4 (as regards Lindeberg’s
central limit theorem).

§ 1 Introduction

During his period of full professorship in Bonn (1921–1935) Hausdorff had
given semester long courses on probability theory twice, once in 1923 and later
in 1931 (both over the summer semesters). However, during the early part of
his career in Leipzig (i. e. between 1895 – 1910) he had lectured on probability
theory and related topics (like mathematical insurance theory, mathematical
statistics, political arithmetic) several times (at least 8 semestrial lectures). Be-
sides, he had published two long research articles on probability theory in 1897
and 1901 ([H 1897a], [H 1901a], this volume, pp. 443–590). However, his thin-
king on probability theory in terms of measure and integration seems to have
begun in earnest while he was writing his magnum opus Grundzüge der Men-

genlehre ([H 1914a], vol. II of this edition) in Greifswald during 1913–1914. In
the 10th chapter of the Grundzüge (

”
Inhalte von Punktmengen“) Hausdorff

states his point of view on this explicitly:

. . . daß manche Theoreme über das Maß von Punktmengen vielleicht ein
vertrauteres Gesicht zeigen, wenn man sie in der Sprache der Wahrschein-
lichkeitsrechnung ausdrückt. (loc. cit. p. 416)

In the same chapter, Hausdorff gives the first correct measure-theoretical
proof of Borel’s famous law of normal numbers (loc. cit. pp. 419–422) which
is now (as in these Lecture Notes) rightly considered to be a special form of
the strong law of large numbers of probability theory. From a study of Haus-

dorff’s Nachlass (some of which is reproduced in this volume elsewhere) and
these Lecture Notes, it would seem that Hausdorff’s ideas and techniques in
probability theory never progressed much beyond what we can glimpse here.
We shall discuss in this essay the several novelties in Hausdorff’s presentati-
on in these Lecture Notes as compared to others of the pre-1920 era; we shall
also indicate the severe theoretical limitations from the modern point of view
of the developments given here.

Hausdorff’s Lecture Notes are subdivided into nine sections followed by
a set of 11 Exercises presented as worked out examples. The section headings
can be approximately translated as follows:

1. Elementary probabilities.

2. Moments of elementary distributions.



3. Games of chance. Insurance calculations.

4. General probabilities.

5. General distributions and their moments. Additive set functions and
Stieltjes integrals.

6. Distribution of a pair of variables.

7. The exponential law. Lyapounov’s limit theorem.

8. The moment problem. The second limit law.

9. Comparison between theory and experience. Method of least squares.

We shall now give critical summaries of the nine sections evaluating them from
a modern perspective but at the same time comparing their contents with
what was the contemporary 1920’s presentation of the topics involved. In our
exposition, we have generally followed Hausdorff’s notations with occasional
exceptions which have been indicated.

§ 2 Finitely additive theory

The first three sections of the Notes concern elementary probability theory
where only the probabilities of events depending on finitely many (say n) other
events are involved; eventually (and interestingly) statements are sought when
n → ∞. Mathematically, this theory needs only the finite additivity of the
underlying probability measure and the chief difficulties are inherently combi-
natorial. The related literature is rich and vast, dating back to Pascal and
Fermat (17th century) continuing through Jacob Bernoulli (his famous
book Ars Conjectandi published posthumously in 1713) and Laplace (who-
se main treatise dates from 1812); it has continued to flourish unabated all
through the 19th and the 20th centuries down to our own times. Most intro-
ductory courses in probability theory give a glimpse of this rich heritage and
Hausdorff’s is no exception. Here no sophisticated mathematical constructi-
ons are needed to start the theory and rigour and clarity can be achieved with a
minimum of technical preliminaries. An abstract modern presentation may be
based on a finitely additive probability measure defined on a suitable Boolean
algebra which, without loss of generality, can be taken to be formed from certain
subsets (and even of all subsets) of a fixed set; the elements A of the Boolean al-
gebra A would then be interpreted as the “events“ (taken as an undefined term)
and w(A) the associated probability. Hausdorff’s presentation can certainly
be interpreted this way and it is a point of view which would have been easy
for him to accept; however, Hausdorff does not make any explicit statement
about the axioms to be fullfilled by his events (“Ereignisse“) and he lays out
his axioms of probability in two simple assumptions which can be interpreted
either abstractly (as above) or more concretely (as done in the examples pre-
sented) as a finitely additive probability measure defined somehow on certain



subsets of a given set. The more modern probability texts (e. g. the well known
book of Feller [F 1968]) present even this elementary theory more formally
as a countably additive probability measure defined on all subsets of a finite or
a denumerable set, a concept that needs hardly any elaborate development. All
the older books, without exception, leave matters undefined almost as in these
Lecture Notes of Hausdorff, passing on to interesting and illustrative examp-
les as soon as possible. As in many other texts, Hausdorff develops the theory
of so-called elementary distributions (“elementare Verteilungen“) and the mo-
ments of the associated random variables, although the latter term is neither
defined nor introduced. The standard examples of binomial, multinomial and
hypergeometric distributions are introduced, the notions of independence and
conditional probabilities are discussed and Bayes’ theorem is presented. All of
this is illustrated by the usual examples of coin-tossing, dice-throwing, Card
games, withdrawl of balls from urns, roulette, lotto and the like. Bayes’ theo-
rem is accompanied by a presentation of what is often known as Laplace’s
law of succession (cf.Hausdorff’s text, pp. 604–608). Along with moments,
the formalism of cumulants (called “die logarithmischen Momente“) is also gi-
ven. The cumulants were much used by probabilists and statisticians of the
period around 1900 and Hausdorff had included some theory of these in his
article [H 1901a] under the name “kanonische Parameter“; the cumulants (also
called semi-invariants) were first introduced by Thiele in 1889; see Hald [Ha
1998] pp. 344–349 for their origin and a brief report on [H 1901a], this volume
pp. 577–578.

In section 2, various elementary forms of the weak law of large numbers (theo-
rems I, II, III, III∗) are proved as well as theorem IV which is equivalent to a
strong law; indeed, Hausdorff forewarns the reader that this last theorem is
of a nature different from the others and that it will be taken up formally later
in section 4. The 4th moment calculation leading to equation (16) of section
2 of the Notes, was one of Hausdorff’s main original steps in his proof of
Borel’s law of normal numbers as given in his Grundzüge; it is taken up in a
slightly more elaborate form later in section 4.

§ 3 Countably additive theory

Sections 4, 5, 6 of the Notes develop the mathematical machinery needed in
order to dicuss general probability distributions. Here, the axiom of countable
additivity (i. e.σ-additivity) is explicitly formulated (“Axiom (γ)“ in section
4), the notions of A∞ = lim supAn, A∞ = lim inf An, for a sequence of events
{An} are defined and a clear formulation of the so-called Borel-Cantelli lemma
is proved. Evidently, the modern appelation “Borel-Cantelli“ is not used by
Hausdorff; he simply says that if

∑

n w(An) < ∞ the w(A∞) = 0, (w(A)
being the probability of the event A) and he gives the correct one line proof
using countable subadditivity (cf. (8) of section 4). He uses this next to prove a
form of the strong law of large numbers (signalled before in section 2). He adds
further that if the events An are independent then

∑

n w(An) = ∞ implies



that w(A∞) = 1. He ends this discussion with a reference to Borel’s famous
1909 paper which he qualifies as “prinzipiell ganz unklar“. We shall explain
some of the lacunae in Borel’s discussion in appendix A where we present
Hausdorff’s elegant and concise proof of the strong law in the context of
modern work.

Sections 5 and 6 are devoted essentially to the theory of measure and integra-
tion in R and R

2. Section 5 begins with the statement that the previous conside-
rations (specially those of section 4 concerning σ-additivity) remain somewhat
uncertain (“schweben insofern noch in der Luft“) in so far as the realizability
of the σ-additive axiom remains to be established. Let us recall that already
in the Grundzüge, Hausdorff had shown that the Lebesgue measure (with
translation invariance) cannot be defined for all subsets of R

n if one were to de-
mand σ-additivity; this, of course, goes back to Vitali as well in 1905. Indeed,
Hausdorff had proved further that even finitely additive extensions of the
Lebesgue measure to all subsets of R

n were impossible if n ≥ 3 and if one insi-
sted on rotation invariance. Hence the importance of establishing the existence
of suitable σ-additive probability measures defined on appropriate σ-algebra
(Hausdorff calls them “abgeschlossenes Mengensystem“ or “Borelsches Sy-
stem“), a fact clearly underlined by Hausdorff. All through the development
of the foundations of probability theory in the 20th century this point has right-
ly attracted the close attention of many mathematicians starting with Wiener

who established the so-called Wiener measure an C([0, 1]) in 1920–23; this was
preceded by Daniell (1918–1919) and more explicitly followed by Kolmo-

gorov in 1933, to name just a few of the most important. Hausdorff never
seemed to have noted these developments, neither in these Notes nor elsewhere.

What Hausdorff establishes in section 4 is that given a monotone non-
decreasing left-continuous function ϕ : R → [0,∞[ with ϕ(−∞) = 0, ϕ(∞) =
µ <∞, there exists a σ-additive non-negative measure Φ defined on a σ-algebra
containing all intervals such that for −∞ < α < β <∞

Φ([α, β[) = ϕ(β) − ϕ(α) (3.1)

A study of Hausdorff’s proof shows that he actually proves the following
more general theorem: let I be a semi-ring of subsets of any set M i. e. I is
stable under finite intersections and if A,B are in I then A \ B is a finite
disjoint union of sets from I; suppose also that M is the denumerable union of
sets An ∈ I, n = 1, 2, . . .; if Φ : I → [0,∞[ is a σ-additive set function such
that

∑

n Φ(An) <∞, then Φ can be extended to a σ-additive (finite) measure
defined on a σ-algebra M of subsets of M with M containing I. The proof also
gives (although this is not explicitly mentioned) that the extension is unique if
we restrict ourselves to the smallest σ-algebra B containing I (I ⊂ B ⊂ M).
It remains now to apply this result to the case of I formed of all Intervalls
I of the form [α, β[ (−∞ < α < β < ∞); taking I to be sets of the form
[α, β[×[α′, β′[ we get the measures treated by Hausdorff in R

2 in section 5.
Hausdorff clearly sees the analogy between the work in section 4 and that
in section 5 and he no doubt must have seen the obvious generalization to R

n;



however, he does not note the complete generality of his method of extension. If
he had, he could have stated what has later been called the Hahn-Kolmogorov
extension theorem, a special form of which can be given as follows: any σ-
additive probability measure defined on an algebra of subsets can be uniquely
extended (preserving σ-additivity) to the generated σ-algebra.

It is important to realize that before the application of the general theorem
mentioned above, it must be established that (3.1) actually does define a σ-
additive set function on the semi-ring I of all intervals of the form [α, β[.
Hausdorff does this in the now standard fashion by using the so-called Heine-
Borel covering lemma. Once we have a σ-additive set function Φ on the semi-
ring I, Hausdorff’s proof consists of the following steps: for any set X ⊂M ,
define

Φ(X) = inf

{

∞
∑

n=1

Φ(In) : X ⊂
⋃

n

In

}

;

then define
Φ(X) = µ− Φ(M \X)

where µ = Φ(M); by the hypothesis made on Φ, µ turns out to be finite. Call
a set X measurable if

Φ(X) = Φ(X).

It is then shown that the family of measurable sets is a σ-algebra M, M con-
tains I and if A ∈ I then

Φ(A) = Φ(A).

The proof given is obviously an adaptation of Lebesgue’s original proof for
the existence of his measure and can be easily adapted to situations where the
underlying Φ is only σ-finite.

All this is, of course, standard material given in numerous modern books;
in the 1920’s such general discussions were seldom given in probability texts
although thanks to Carathéodory’s well-known book (Vorlesungen über re-

elle Funktionen 1917) and other monographs (e. g. those of Lebesgue, de la

Vallée Poussin and others) these techniques of measure theory were beco-
ming wide-spread in the 1920’s.

In the rest of section 5, Hausdorff rapidly develops the integration theo-
ry of measurable real functions f of one real variable with respect to a finite
positive measure ϕ in R. This is done as follows: after establishing the stabi-
lity of such measurable functions under standard algebraic operations and the
formation of sup, inf, limit of sequences of them, it is easily shown that any
such measurable function f is the uniform limit of a sequence {fn} of mea-
surable functions each taking only at most denumerably many distinct values
(a function of the latter type is called a “Skalenfunktion“); finally, one defines
∫

f dϕ as the limit of
∫

fn dϕ. The usual properties of the integral are worked
out with special mention of the monotone convergence theorem; all this is done
very efficiently and rigorously; the relation between this integral and that of the
Riemann-Lebesgue-Stieltjes theory is clearly spelled out. In section 6, the work



is generalized to R
2 and a version of Fubini’s theorem is established (without

mentioning Fubini); this is then used to introduce the convolution integral (in
modern notation f ∗ g: (20) section 5) and the moments etc. for one or more
random variables and their sums. However, the term random variable is never
introduced.

We know from NL Hausdorff : Kapsel 51 : Fasz. 1129 (a manuscript captio-
ned “Maß- und Integrationstheorie“ of 203 sheets composed around the latter
half of the 1920’s) that Hausdorff was planning a considerable extension of
the 10th chapter of his Grundzüge devoted to measure and integration theo-
ry. It would thus appear that the material in sections 4, 5, 6 was destined
to be used in a more elaborate work. Hausdorff’s sustained interest in the
subject is testified by the large manuscripts which he prepared for his various
lectures on themes entitled Modern Integration Theory or Real Functions and

Measure Theory (NL Hausdorff : Kapsel 13 : Fasz 43: “Der moderne Inte-
gralbegriff“, Bonn, WS 1922/23, WS 1927/28, 210 sheets; Kapsel 17 : Fasz.
53: “Reelle Funktionen und Maßtheorie“, Bonn, WS 1932/33, 295 sheets). The
last contains much material on Perron’s theory of integration and derivation
theory; however, there is no treatment of integration theory in abstract sets (à
la Fréchet - Daniell - Kolmogorov etc.) which could further probability
theory.

§ 4 The central limit theorem

As understood today, “a“ central limit theorem states that the probabi-
lity distribution of a sum x1 + · · · + xn of n random variables x1, . . . , xn

“converges“ as n → ∞ to a certain distinguished probability distribution pro-

vided the sums are suitably normalized and the variables satisfy appropriate
conditions. “The“ central limit theorem for a sequence of real-valued indepen-

dent random variables x1, x2, . . . with 0 mean and finite variances is understood
to be a statement of the following type (E denoting mathematical expectation):
let

a2
j = Ex2

j , j ≥ 1; b2n = a2
1 + · · · + a2

n, 0 < bn <∞, n ≥ 1;

then

lim
n→∞

Prob

{

x1 + · · · + xn

bn
< z

}

=
1√
2π

∫ z

−∞

e−u2/2 du (4.1)

provided that the sequence {xn} satisfies certain further conditions. A high-
water mark in the history of this theorem is provided by the theorem proved
by Lindeberg in 1922; he proved that (4.1) is valid if

∀ ε > 0, lim
n→∞

1

b2n

n
∑

j=1

E (x2
j ; |xj | > εbn) = 0 (4.2)

The condition (4.2) is now-a-days called the Lindeberg condition although Lin-

deberg himself did not write it in this form; in Appendix B we have given the



various equivalent forms of (4.2) given by Lindeberg in his 1922 article (cited
precisely by Hausdorff) and we have explained there the (standard modern)
notation which we have used in (4.2). We note in passing that Hausdorff him-
self (contrary to Lindeberg) does not use the standard normal distribution
(mean 0, variance 1, as in (4.1)) but rather the normal distribution of variance
1
2 (density e−u2

/
√
π, u ∈ R) with norming constants

√
2 bn rather then bn as

seems to have been customary in much of the writing before 1920; this is ob-
viously of no theoretical importance. Although Hausdorff cites Lindeberg,
he does not prove the central limit theorem (4.1) under the general Lindeberg
condition (4.2) but rather under Lyapounov’s (dating from 1900; cf. reference
in Hausdorff’s Notes) which can be given as follows:

lim
n→∞

1

b3n

n
∑

j=1

E |xj |3 = 0 (4.3)

supposing, of course, that E |xj |3 < ∞, j ≥ 1. Under the last hypothesis, it
is easy to show that (4.3) implies (4.2). Indeed, Lindeberg’s first theorem in
his 1922 paper is essentially the proof of the central limit theorem (4.1) under
the Lyapounov condition (4.3). Lyapounov also gave a more general condition
which can be stated as follows: for some β > 2,

lim
n→∞

1

bβn

n
∑

j=1

E |xj |β = 0 (4.4)

It is not too difficult to show (a proof is given in Hausdorff’s Notes) that
(4.3) implies (4.4) for 2 < β < 3. Hausdorff also points out that if (4.4) holds
for some β > 3 then (4.3) will hold also so that the central limit theorem proved
under (4.3) will have been proved under (4.4) as well (with β > 3). Hausdorff

concludes by remarking that in the special case of uniformly bounded random
variables the central limit theorem (4.1) is valid if only bn → ∞; this remark
is then used to obtain the normal approximation to binomial like probabilities
illustrated by some numerical examples of the latter.

One interesting point in Hausdorff’s presentation is that he gives the cen-
tral limit theorem in the following simple finitary form: for any fixed n =
1, 2, . . . , x ∈ R,

∣

∣

∣

∣

Prob

{

x1 + · · · + xn

bn
< x

}

− 1√
2π

∫ x

−∞

e−u2/2 du

∣

∣

∣

∣

≤ µL1/4(n) (4.5)

where

L(n) =
1

b3n

n
∑

j=1

E |xj |3

and µ is some fixed numerical constant independent of the random variables
xn. Recall that in Hausdorff’s work,

Exj = 0, j ≥ 1, b2n = E (x1 + · · · + xn)2, d3
n =

n
∑

j=1

E |xj |3,



so that

L(n) =

(

dn

bn

)3

;

further, we have used in (4.5) the norming bn instead of
√

2 bn and the standard
normal density instead of Hausdorff’s normal density of variance 1

2 which,
as we have already pointed out, does not affect (4.5) in any way. The result
contained in (4.5) (implicit in Lindeberg’s paper; cf. Appendix B) although far
from being the optimal result in this direction, was striking for the 1920’s, not
only for its remarkable elegance but also for its rigorous but simple derivation.
The statement and proof given by Hausdorff is essentially Lindeberg’s,
presented in a way that a numerical estimate for µ can be easily deduced. In
Appendix B, we shall see that the best result in (4.5) replaces L1/4(n) by L(n);
this is generally referred to as the Berry-Esseen theorem; further comments on
this will be found in our Appendix B.

Section 7 contains a full discussion of the basic analytic properties of the
normal distribution (“das Gausssche Exponentialgesetz“) including the calcu-
lation of its moments, its moment generating function, its associated orthogonal
polynomials (Hermite polynomials) and the corresponding series development
as well as the basic formulae concerning the gamma and the beta functions. All
this was, of course, standard material for the 1920’s and is dealt with efficiently.
Gauss’ well-known “maximum-likelihood“ derivation of the normal distributi-
on is briefly but clearly described; Hausdorff, however, seems to be more
inclined to consider the central limit theorem itself as a more significant justi-
fication for the use of the normal distribution. Some of the analytical material
concerning the latter is repeated to some extend in section 8 for its appropriate
use there.

§ 5 The “second“ limit theorem

Section 8 is entirely devoted to this theme and the related moment problem.
For historical reasons given hereafter, the older mathematical literature (up
until 1931 at least) often used the appellation “second limit theorem“ for the
following statement (or any of its equivalent versions): let F1, F2, . . . be a se-
quence of monotone non-decreasing functions such that Fn(−∞) = 0; Fn(∞) =
1, n ≥ 1 and such that all the moments of positive integral orders k ≥ 1 exist
for each Fn; let

F (x) =
1√
2π

∫ x

−∞

e−u2/2 du, x ∈ R;

if

lim
n→∞

∫

∞

−∞

xk dFn(x) =

∫

∞

−∞

xk dF (x), k = 1, 2, . . . (5.1)

then

lim
n→∞

Fn(x) = F (x) (5.2)



for all x ∈ R.
As mentioned before, in Hausdorff’s Notes as well as in other older texts

F (x) is defined as

F (x) =
1√
π

∫ x

−∞

e−u2

du;

obviously, this slightly different standardization of the limiting Gaussian or
normal distribution function is of no theoretical significance.

The first proof that (5.1) ⇒ (5.2) (for F standard normal) was given by
Chebyshev (around 1887) whose proof was completed by Markov (around
1898). Chebyshev’s proof (in the French version) appeared in his paper Sur

deux théorèmes relatifs aux probabilités (cf. his Oeuvres, vol. II, pp. 480–491,
Chelsea); in this paper, the first theorem concerns the weak law of large num-
bers and the second corresponds to the implication (5.1) ⇒ (5.2). This seems to
be the origin of the terminology “second limit theorem“ used at times by Mar-

kov and others. Actually, Chebyshev also formulated the implication (5.1)
⇒ (5.2) in more finitary terms: supposing that in (5.1) only the moments of
the order k = 1, 2, . . . , 2N were used, he gave an estimation for |Fn(x)−F (x)|
which then led to the result (5.1) ⇒ (5.2) by letting N → ∞. As can be guessed
from these remarks, Chebyshev (as well as Markov) based their proofs on
their detailed studies of the moment problem which we do not discuss here;
a clear exposition of this “method of moments“, along with some historical
references, can be seen in Uspensky’s book [U 1937], Appendix II, pp. 356–
395. A different, direct proof was offered by Pólya in his paper Über den

zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momenten-

problem, Math. Zeitschrift 8 (1920), 171–181. It seems that this is the beginning
of the appellation “Central limit theorem“ for theorems asserting convergence
to a normal distribution; a careful summary of its early history is given in Hald

[Ha 1998] pp. 335–337, where further historical references can be found. Hald

not only cites Chebyshev, Markov, Lyapounov, Pólya and later papers
and books of historical relevance, he also gives a clear analysis of the contributi-
ons of the earlier papers of Bessel, Poisson, Cauchy and Laplace towards
a “general“ proof of the so-called central limit theorem. We cannot, however,
go into this detailed analysis of the history of the central limit theorem here.

A definitive generalization of the so-called “second limit theorem“ was given
by Fréchet and Shohat in 1931 in their paper A proof of the generalized

second limit theorem in the theory of probability, Trans.Amer.Math. Soc. 33
(1931), 533–543. As a conclusion to their main theorem, Fréchet and Shohat

can conclude that if (5.1) holds for F , any monotone non-decreasing function
with F (−∞) = 0, F (∞) = 1 all of whose positive integral moments are finite,
then (5.2) holds whenever x is a point of continuity of F , provided that F is
determined by its moments. This last condition, well-studied by many since
Chebyshev, means that if

∫

∞

−∞

xk dF (x) =

∫

∞

−∞

xk dG(x), k = 0, 1, 2, . . .



(where G is any monotone non-decreasing function with G(−∞) = 0, G(∞) =
1, having all positive integral moments) then F (x) = G(x) for all points of
continuity x of G (or of F ). The modern treatment of these questions is via the
positive Radon measures in R induced by bounded monotone non-decreasing
functions; although this latter point of view is more natural to us, we shall
refrain from translating matters into that language here.

It is useful to recall briefly the main theorem of Fréchet and Shohat which
yield the above generalized second limit theorem since this will show clearly
the novelty of Hausdorff’s approach as presented in these Notes. A minor
specialization of the main theorem of Fréchet–Shohat states that if

lim
n→∞

∫

∞

−∞

xk dFn(x) = mk, k = 1, 2, · · ·

holds (where Fn’s are as in the previous discussion and the mk’s are all finite)
then there exists a subsequence n1 < n2 < · · · and a monotone non-decreasing
function F with F (−∞) = 0, F (∞) = 1 such that

mk =

∫

∞

−∞

xk dF (x), k = 1, 2, . . .

and
lim

i→∞

Fni
(x) = F (x)

for all points of continuity x of F .
Once the main theorem of Fréchet–Shohat is estabished, their generalized

second limit theorem becomes an easy consequence. Indeed, any subsequence
of {Fn} will then have a further subsequence converging to some monotone
non-decreasing function say G (with G(−∞) = 0 G(∞) = 1) having the same
moments as F so that F (x) = G(x) for all points of continuity x, if F is
determined by its moments; it is then evident that the sequence Fn itself must
converge to F .

The above line of proof is the one generally given in modern text-books
(cf. [CT 1988] pp. 264–265 for a complete presentation). This involves a pre-
liminary discussion of the so-called Helly–Bray theorems which have to do
with the weak convergence of positive measures in R; these were known around
1920 but perhaps not so widely; Fréchet and Shohat refer to Montel (1907)
and Helly (1912) for their “selection theorems“. The fact that the standard
normal distribution is determined by its moments was well known since Che-

byshev but its proof is not trivial; Hausdorff’s Notes offer a complete proof;
other standard proofs can be read in many text-books (cf. [CT 1988] p. 285).

Hausdorff’s Notes avoid all the preminilary work on the convergence of
Stieltjes integrals and nevertheless manages to prove the complete form of the
Chebyshev–Markov version of the second limit theorem (theorem III of
section 8); the theorems I and II of section 8 give a slightly more general version
in so far as the limiting distribution function F (Hausdorff’s ϕ) need not be



standard normal. The statements about the uniform convergence of Fn(x) to
F (x) (if F is continuous) has been well-known at least since Pólya’s paper of
1920 and is an easy analytical exercise.

Since Hausdorff’s method of proof for the Chebyshev–Markov theorem
is novel and somewhat unorthodox, we indicate briefly its main line of attack,
following essentially Hausdorff’s notations. Given a monotone non-decreasing
function ϕ, with ϕ(−∞) = 0, ϕ(∞) = µ0, possessing all moments

µk =

∫

∞

−∞

xk dϕ(x), k = 0, 1, 2, . . .

(note that µ0 = ϕ(∞) = 1 in probabilistic contexts; Hausdorff proceeds a
little more generally), Hausdorff calls a point ξ ∈ R a point of determinacy

(“Bestimmtheitsstelle“) for the moment sequence {µk} if for any monotone
non-decreasing function ψ with ψ(−∞) = 0, ψ(∞) = µ0, possessing the same
moments µk i. e.

µk =

∫

∞

−∞

xk dψ(x), k = 0, 1, 2, · · ·

we have ϕ(ξ) = ψ(ξ). As Hausdorff immediately points out, at a point of
determinacy ξ, ϕ must evidently be continuous; also, if every point ξ ∈ R

is a point of determinacy for {µk} then the corresponding moment problem
is determinate (but not conversely, for the obvious reason that determinate
moment problems corresponding to discontinuous ϕ are excluded). Hausdorff

now shows that ξ is a point of determinacy for the moment sequence {µk} if
and only if δ(ξ) = 0 where

δ(ξ) = inf

{∫

∞

−∞

P (x) dϕ(x) : P polynomial, P ≥ 0, P (ξ) ≥ 1

}

It is further shown that

δ(ξ) = lim
n→∞

δn(ξ)

where δn(ξ) is defined like δ(ξ) but restricting the polynomials P there to be
of degree ≤ 2n. Next, an explicit formula for δn(ξ) is obtained:

1

δn(ξ)
=

n
∑

ν=0

bν f
2
ν (ξ)

where {fn} is the sequence of orthogonal polynomials associated with ϕ, ren-
dered unique by demanding that f0 ≡ 1, degree of fn = n with coefficient of
xn in fn being 1; further

1

bn
=

∫

∞

−∞

f2
n(x) dϕ(x), n ≥ 0.



Thus, ξ is a point of determinacy for the moment problem {µk} if and only if

∞
∑

ν=0

bν f
2
ν (ξ) = ∞.

Since the fn’s and the bn’s can be explicitly calculated if ϕ is the normal dis-
tribution function (these calculations involving the Hermite polynomials are
given in detail) it can be established that the moment problem for the nor-
mal distribution function is determinate. Hausdorff can now easily deduce
his theorem I (section 8) to the effect that if the moments of any monotone
non-decreasing sequence {ϕn}, ϕn(−∞) = 0, converge to the corresponding
moments {µk} of ϕ and if ξ is a point of determinacy (in the sense explained
above) then ϕn(ξ) → ϕ(ξ) as n→ ∞. Theorem II (section 8) is now an imme-
diate corollary in that here ϕ is supposed to be such that all points ξ ∈ R are
points of determinacy.

The reasoning used by Hausdorff to achieve what is sketched above is ele-
mentary but not very short (about 7 printed pages of careful work). Some of
it is standard material in the theory of orthogonal polynomials as related to
the moment problem; the definition of δ(ξ), δn(ξ) (and of other related quan-
tities which we have omitted) is directly related to M.Riesz’s approach to the
moment problem. Riesz’s papers concerning this appeared first during 1921–
1923 (cf [R 1988] pp. 216–311, “Sur le problème des moments“ (3 papers)) and
formed an important enrichment of the theory of moments. We know from
Hausdorff’s Nachlass that he had learned and mastered M.Riesz’s techni-
ques around September 1920 and we find literally dozens of manuscripts on the
general theme of the moment problem (dated between 1917–1924 and later);
the manuscripts indicate Hausdorff’s thorough knowledge of the theory in-
cluding the classical contributions of Chebyshev and Stieltjes as well as the
later work of Hamburger. Let us recall Hausdorff’s own important papers
in this area published in 1921–1923 ([H 1921], [H 1923b]) reprinted and com-
mented in [H 2001].

§ 6 Method of Least squares

The ninth and last section of Hausdorff’s Notes is entirely devoted to
least squares estimation of unknown parameters. This is now considered to be
a topic in statistical theory; however, many of the standard probability texts
of the early 20th century (for example, those of Poincaré, Markov, Czu-

ber, Castelnuovo) contained a discussion of the method of least squares.
Hausdorff whose early training was in astronomy, had followed lectures in
probability theory in Leipzig in 1890 by the well-known astronomer Heinrich

Bruns (1848–1919); Bruns’ lecture notes (conserved in NL Hausdorff : Kap-
sel 55 : Fasz. 1162) contain a detailed presentation of the Gaussian least squares
theory; Bruns wrote a successful book on probability theory Wahrscheinlich-

keitsrechnung und Kollektivmasslehre, Teubner, Leipzig 1906, which however



did not include least squares theory. Hausdorff’s own lectures on probability
theory (1900/1901) also contained a detailed description of the least squares
theoy (NL Hausdorff : Kapsel 02 : Fasz. 10). The theory given in the present
Notes is briefer but in some ways mathematically more complete; it seems clear
that Hausdorff had thought about the theory on and off for a long time.

We shall now briefly outline the part of least squares theory treated here by
Hausdorff; we use, essentially, Hausdorff’s notation converted into matrix
symbolism. This abbreviates the main formulae considerably and bring them
into a form in which they often appear in current statistical writings. Actually,
Hausdorff himself had written out his formulae of section 9 in matrix notation
in another manuscript (NL Hausdorff : Kapsel 51 : Fasz. 1121 “Methode der
kleinsten Quadrate in Matricenform“; 2 pages, complement to sect. 9).

Let

ξ = b β + x

where ξ, x are two n × 1 matrices, b a n × r matrix (r < n), β a r × 1 ma-
trix (all real); the entries ξ1, . . . , ξn of ξ and x1, . . . , xn of x are random va-
riables, b a matrix of rank r (whose enties biλ are known real numbers), β
a vector of “unknown“ parameters whose entries β1, . . . , βr are to be estima-
ted on the basis of the “observations“ ξ1, . . . , ξn. The hypotheses made on the
“errors“ x1, . . . , xn are as follows:

Exi = 0, Ex2
i =

m2

pi
, 1 ≤ i ≤ n,

where the “variance“ parameter m2 is unknown but the “weights“ pi are given
(0 < pi <∞, 0 < m <∞). Further, x1, . . . , xn are supposed to be independent
(although this is not clearly spelled out); for a great deal of the calculations,
only the orthogonality of the xi’s is used i. e.

E (xi xj) = 0, 1 ≤ i 6= j ≤ n;

for some calculations the existence of the 4th moments Ex4
i is needed. In matrix

notation,

Ex = 0, E (xx′) = m2 p−1 = variance-covariance matrix of x

where

p = diag(p1, . . . , pn)

and ′ indicates transposition.
The method of least squares (“méthode des moindres carrés“) as given by

Legendre in 1805 for the estimation of β on the basis of ξ (observed) and

known b consists in obtaining β̂ such that

inf
β∈Rr

(ξ − bβ)′(ξ − bβ) =‖ ξ − bβ̂ ‖2 (6.1)



Our notation is explained by the following: b′ is the transpose of b and

(ξ − bβ)′(ξ − bβ) =‖ ξ − bβ ‖2=

n
∑

i=1

(

ξi −
r
∑

λ=1

biλ βλ

)2

The formula for β̂ turns out to be

β̂ = (b′b)−1 b′ ξ (6.2)

In this solution no attention is paid to the pi’s and the random variables xi; (6.2)
is obtained by simply solving the algebraic minimization problem (6.1) which
gives rise to the so-called “normal equations“ (Gauss’ terminology) equivalent

to the calculation of the inverse of the r × r matrix b′b: solve for β̂ in

(b′b) β̂ = b′ ξ (6.3)

The solution (6.2) may be considered to be that corresponding to the case
pi = 1, 1 ≤ i ≤ n. For the general case, the minimization to be considered is
that of

(ξ − bβ)′ p (ξ − bβ) =‖ √
p ξ −√

p bβ ‖2 (6.4)

which gives

β̂ = (b′p b)−1b′p ξ (6.5)

so that p = en = (n×n) identity matrix in (6.5) gives (6.2). The fact that b′p b
is invertible is a consequence of the assumption that rank b = r (b being a n×r
matrix and p a strictly positive diagonal matrix); this is proved in foot-note 7
of p. 711 of the Notes.

The basic theorem of the statistical theory of least squares is that β̂ in (6.5)
is the same as (the unique) linear unbiased, minimum variance estimator of β

i. e. β̂ = aξ where a is an r × n matrix such that

E β̂ = β (unbiasedness of β̂) (6.6)

and the variance of each component β̂λ of β̂ (1 ≤ λ ≤ r) is minimal where

var β̂λ = E (β̂λ − βλ)2 = m2
n
∑

i=1

a2
λi

pi
. (6.7)

Hausdorff does not state or prove this theorem (due to Gauss) but he simply
determines the r × n matrix a by using the criteria (6.6) and (6.7). Since

E (aξ) = aE ξ = a b β

(6.6) gives that

ab = er = (r × r) identity matrix.



Hausdorff now minimizes (6.7) under the condition ab = er by using Lagran-
ge multipliers; this leads to

a = (b′p b)−1 b′p (6.8)

and to the formula (6.5) for β̂ = a ξ. Note that equations (22), (23), (24) of
section 9 in Hausdorff’s Notes correspond to

a = d b′p, d c = er, c = b′p b

in matrix notation whence follows (6.8) and then (6.5). Hausdorff writes η

for β̂; the notation β̂ as estimate for the “unknown“ parameter β is common in
statistical literature where the expressions

εi = ξi −
r
∑

λ=1

biλ β̂λ, 1 ≤ i ≤ n (6.9)

are known as “residuals“ (Hausdorff’s “scheinbare Beobachtungsfehler“). Let

us now write down the variance-covariance matrix of β̂:

E (β̂ − β)(β̂ − β)′ = m2 (b′p b)−1 (6.10)

This is an immediate algebraic consequence of (6.8) and the following:

β̂ − β = ax, E (β̂ − β)(β̂ − β)′ = E (a xx′a) = m2(a p−1a′)

Hausdorff gives only the diagonal terms of the matrix (6.10) (in the formulae
(21), (25) of section 9 of his Notes). He now goes on to obtain an estimate for
the variance parameter m2; for this he uses the statistic

ζ =
1

n− r

n
∑

i=1

pi ε
2
i (6.11)

where the residuals εi are given by (6.9). He then shows by a straight-forward
calculation that

E ζ = m2 (6.12)

and that

E (ζ −m2)2 =
1

(n− r)2

n
∑

i=1

g2
ii λ4(xi) +

2

n− r
m4 (6.13)

where g = [gij ] is the (n×n) matrix given by (cf. (31 of section 9 of the Notes)

g = p− p b a = p− p b(b′p b)−1b′p (6.14)

and

λ4(xi) = µ4(xi) − 3µ2
2(xi), µ4(xi) = Ex4

i , µ2(xi) = Ex2
i =

m2

pi
;



λ4(xi) is the 4th cumulant of xi. Thus, ζ is an unbiased estimator of the variance
parameter m2; further, Hausdorff easily establishes that under some natural
conditions on the errors xi, the right hand side in (6.13) goes to 0 as n→ ∞ so
that ζ is a so-called consistent estimator of m2 i. e. ζ = ζn → m2 in probability
as n→ ∞. If the xi’s are all normally distributed then λ4(xi) = 0 and the right
hand side of (6.13) simplifies to 2m4/(n− r) which clearly goes to 0 as n→ ∞.

It is useful to specialize the above results to the case r = 1 which is the
one with which Hausdorff begins his discussion; here, we write (as in Haus-

dorff)
ξi = α+ xi, 1 ≤ i ≤ n

with Exi = 0, Ex2
i = m2/pi. Then we obtain from the foregoing (taking

b =







1
...
1






, β replaced by α, ξ = bα+ x) that

α̂ =
1

P

n
∑

i=1

pi ξi, P =

n
∑

i=1

pi

with

E α̂ = α, E (α̂− α)2 =
m2

P
;

also,

ζ =
1

n− 1

n
∑

i=1

pi ε
2
i , εi = ξi − α̂, E ζ = m2

with E (ζ −m2)2 given by (6.13) with r = 1 which becomes (if pi = 1, 1 ≤ i ≤
n, λ4(xi) = λ4 independent of i)

E (ζ −m2)2 =
1

n
λ4 +

2

n− 1
m4.

All of the results above had been given by Gauss in his Theoria Combinationis

(1823–28); the exact references to each of the above is given precisely in Hald

[Ha 1998] (pp. 465–489; chapter 21 in general). Gauss’ earlier work Theoria

Motus (1809) is also analized in detail in [Ha 1998] (chapter 19); Hald clearly
outlines Legendre’s somewhat earlier independent publication of 1805 and
gives an account of the ensuing Gauss–Legendre priority dispute. Clearly,
Gauss’ analysis, statistically and numerically, was much more complete than
Legendre’s, although Legendre’s prior publication of the theory as a non-
statistical solution to a problem in interpolation theory had been apparently
widely appreciated by many practitioners of the period.

Naturally, Gauss’ analysis did not use any matrices; however, as Hald and
others have pointed out, the use of the formalism of matrices clarifies much
of the complicated algebra without using any of the theorems of the theory of
matrices. Hausdorff’s Notes work out everything using elementary algebra



although as he himself had realized (as indicated above) that the results can
be written down more succintly by using matrices.

Many generalizations of the above theory exist in current statistical litera-
ture; one may relax the condition of rank b = r and try to estimate other linear
functions of the β; the case where the variance-covariance matrix of the error
vector x is some general positive definite matrix (other than m2 diag (p−1

1 , . . . ,
p−1

n )) has also been studied. Some of these references are given in [Ha 1998];
others can be found in standard statistical texts like Kendall and Stuart

[KS 1973], chapter 19. The statistical literature around the least squares theo-
ry, both theoretical and practical, is immense and contains many of the most
important statistical methods like regression analysis as well as analysis of va-
riance and covariance.

The theory outlined in Hausdorff’s Notes is sometimes subsumed by stati-
sticians under the general title of the Gauss-Markov theorem; Hald [Ha 1998]
p. 471 rightly (it seems to us) points out the inappropriateness of this appel-
lation in so far as all the results were given already by Gauss. Hald makes
interesting remarks on Gauss’ unbiased estimator ζ of the variance parameter
m2 (cf. (6.11) above) and the formula for the variance of ζ (cf. (6.13) above);
the formula due to Gauss reproduced by Hald ([Ha 1998] p. 477, eqn. (1)) is
the special case of our (6.13) with pi = 1, 1 ≤ i ≤ n. Hald remarks that
this formula for the variance of ζ seems to have “disappeared from the litera-
ture“ (ibid. p. 479) except in the case r = 1; it was therefore interesting to see
the general formula given (and derived in detail) in these Notes. The estima-
tion of the variance parameter m2 had obviously intrigued Hausdorff since
he refers to this problem specially (p. 712) regretting the fact that a minimum
variance estimate of m2 must involve much calculation (“mit grösserer Rech-
nung verknüpft“); in this direction, he gives a reference to a 1892/93 paper by
Bruns; a study of the latter does not reveal a clear solution to the problem rai-
sed. Some remarks on this are given in Hald [Ha 1998] p. 480 with a reference
to Plackett (1960).

Remarks on the Exercises

The exercises are mostly standard and concern the elementary probability
theory discussed in sections 1 and 2 of the Notes; their solutions are given in
some detail. Exercise 11 concerning the kth decimal digit of log10 x (and its
generalization) is somewhat different; a related problem appears in Pólya–

Szegö Aufgaben und Lehrsätze aus der Analysis I (II. Abschnitt, 178–181) and
is attributed to J. Franel. The reference to Urban in exercise 11 concerns:
F.M.Urban, Grundlagen der Wahrscheinlichkeitsrechnung und der Theorie

der Beobachtungsfehler. Teubner, Leipzig 1923.

§ 7 Conclusion

The Notes present a good course in probability theory at a high level of
mathematical precision. Some of the material presented was either new or else



not easily accessible in the 1920’s. The construction of the probability mea-
sures in R

n and the associated integration theory are given very efficiently.
The treatment of the weak and strong laws is exact albeit unnecessarily re-
stricted to simple random variables (taking only finitely many distinct values);
this was already an improvement when his Grundzüge (1914) was published.
Hausdorff’s presentation of the central limit theorem in Lyapounov’s form
using Lindberg’s method was a definite advance over most published accounts
in the books of the 1920’s. No wonder Cramér writes in his autobiographi-
cal remarks (Half a century with probability theory, some personal recollection,
Ann. Prob. 4 (1976), 509–546, cf. 512; in [C 1994], vol. II, p. 1355):

The work of Liapounov was very little known outside Russia, but I had
the good luck to be allowed to see some notes on his work made by the
German mathematician Hausdorff, and these had a great influence on
my subsequent work in the field.

Another novelty of the Notes is the treatment of the generalized Chebyshev–
Markov limit theorem by using the new methods of M.Riesz. Finally, the least
squares theory was treated succinctly but thoroughly.

We must now underline the main weaknesses of the Notes from the point
of view of modern theory; these were perhaps inevitable since the theory of
probability had not yet attained the mathematical firmness that it was to
acquire after the publication in 1933 of Kolmogorov’s famous axiomatization
(see [GK 1954] for exact reference). To pin-point the two major shortcomings of
these Notes we must indicate the modern formulation of probability theory used
universally in mathematical discourse. A probability space is a triple (Ω, Σ, P)
where Ω is some set, Σ is a σ-algebra of subsets of Ω and P : Σ → [0, 1] is a
σ-additive measure (called probability) with P(Ω) = 1. A real-valued random
variable is a measurable map X : Ω → R; its law or distribution is given by the
probability measure µX induced by X in R i. e. µX(A) = P(X−1A), A being
a Borel subset of R. Analogously, a measurable map X : Ω → R

n defines a
random vector; other types of random elements and their laws are defined as
in the real-valued case. All this must have been clear (or almost clear) to many
around the 1920’s but rarely spelled out; most writers (as in these Notes) simply
contented themselves with the laws µX defined in R

n and even this only in terms
of the so-called cumulative distribution functions. But without a clear definition
of random variables, even very simple notions like convergence in probability
or convergence almost surely require impossible circumlocutions. The obvious
fact that two real random variables X,Y can have the same law but be always
unequal does not become evident. But it is not enough to have the necessary
definitions concerning random variables; these, after all, although providing an
enormous terminological convenience, follow the usual well-understood theory
of measurable functions clearly established since Lebesgue’s work.

Another crucial element is a proof of the existence of suitable probability
spaces to accomodate interesting theories. Thus, in order to study a sequence
of independent real-valued random variables X1, X2, . . . with prescribed laws



µ1, µ2, · · · one must establish a theorem guaranteering the existence of a pro-
bability space (Ω, Σ, P) and appropriate measurable functions Xn : Ω → R.
This can now be ensured by taking

Ω = R × R × · · · , P = µ1 ⊗ µ2 ⊗ · · · , Xn(ω1, ω2, . . .) = ωn, n = 1, 2, . . .

However, the existence of the product measure P was not known until much
after 1923 and several erroneous proofs had circulated before 1930. Indeed, a
major theorem in Kolmogorov’s monograph proved (for the first time) the
existence of a suitable probability space made out of R

T (for any index set T )
which would accomodate any stochastic process whose description was not self-
contradictory. Hausdorff must have felt the need for such theorems when he
mentions in his section 5 that “Die bisherigen Betrachtungen, insbesondere die
von § 4, schweben insofern noch in der Luft . . .“ Here he was thinking of having
a probability space which would at least accomodate a sequence of independent
events {An} with assigned probabilities w(An) = pn; this he could have easily
obtained in [0, 1] but there is no evidence that he ever tried to do this.

Leaving aside the problem of the existence of suitable probability spaces
which concerns the solution of a well-defined mathematical problem, we must
add a few words on the strange avoidance of a proper definition of the very
notion of random variables on the part of almost all authors of books and
monographs well into the 1950’s. For them a random variable (a chance variable
or some such term) was simply given by some probability distribution in R (or
R

n) and in case of R, this would be specified by a monotone non-decreasing
function F : R → [0, 1] (with F (−∞) = 0, F (∞) = 1), F (x) being interpreted
as the probability that the variable concerned is < x (or ≤ x). This is the point
of view in Hausdorff’s Notes and this was the accepted way of discussing
things until 1933; even later books like Lévy’s famous Théorie de l’addition

des variables aléatoires (1937) or Cramér’s Mathematical methods of statistics

(1946) (see [GK 1954] for exact references) or Fréchet’s 1950 volume ([Fr
1950]) do not consider it necessary to provide any mathematical definition
of a random variable. Indeed, Gnedenko and Kolmogorov point this out
explicitly as regards Cramér’s book ([GK 1954], p. 13); Doob’s appendix in
[GK 1954] clearly spells out the necessity of a formal definition of random
variables and allied matters and his own monograph [D 1953] sets up standards
of rigour in probability theory which are now universally accepted. Of course,
this avoidance of exact definitions was not unique to probability theory; for
long periods, fundamental notions like those of real numbers, vectors, tensor
products, manifolds etc. were generally left in a state of “flou artistique“.

These Lecture Notes of Hausdorff represent the utmost limits of under-
standing and clarification of mathematical probability to which Hausdorff

had attained in 1923–1933. A study of his abundant Nachlaß on that subject
and related matters (some published in this volume) does not indicate any
progress on his part beyond what is perceptable here. Hausdorff sees clearly
that mathematical probability is a branch of measure and integration theory
but fails to make any decisive steps beyond this recognition. Further, his ma-



stery of the limit theorems of the theory, both in their formulation as well as in
their proofs, remains bounded by what is seen here in these Notes. The decisive
changes brought about in probability theory by the spate of progress in that
theory in the 1930’s remained unperceived by him.

Appendices

For the two appendices which follow we shall use the standard modern pro-
babilistic notations and definitions both to describe the older results as well as
to state the present day state of knowledge. Recall that underlying any pro-
babilistic discourse, there is a probability triple (Ω, Σ, P) (as explained in the
preceding section 7); if X : Ω → R is a real-valued random variable we write

EX =

∫

Ω

X dP, E (X ;A) =

∫

A

X dP if A ∈ Σ;

if µ = µX is the law (or distribution) ofX and F (x) = FX(x) = P(X ≤ x), x ∈
R, is the associated (cumulative) distribution function then

EX =

∫

∞

−∞

xdµ(x) =

∫

∞

−∞

xdF (x),

E (X ;X ∈ B) =

∫

B

xdµ(x) =

∫

B

xdF (x)

where B is a Borel subset of R; more generally, if f : R → R is a Borel function
then

E f(X) =

∫

∞

−∞

f(x) dµ(x) =

∫

∞

−∞

f(x) dF (x)

where f(X) = f ◦ X . In the sequal when we write EX = 0, we shall tacitly
assume that E |X | < ∞; more genarally, whenever we write E f(X) it will be
assumed that E |f(X)| < ∞. References to older papers not explicitly given
are to be found in [BN 1977] or in the standard recent books like [CT 1988],
[P 1995].

Appendix A
Concerns strong laws and Borel’s proof of his strong law

(i) Let X1, X2, . . . be a sequence of real-valued random variables; strong laws
concern the almost sure (a. s.) behaviour of the partial sums

Sn = X1 + · · · +Xn.

The so-called weak laws study the same problem for convergence in probability
(i. e. convergence in measure). Of course, the study can be (and in recent years,
has been) extended to the case of vector-valued and other types of random



variables; however, we shall not say anything about this. Most of the results
concern the existence of numerical sequences {an}, {bn}, 0 < bn, such that

(a) lim
n→∞

{

Sn − an

bn

}

exists a. s. (b) 0 < lim sup
n→∞

|Sn − an|
bn

<∞ a. s.

(c)

∞
∑

n=1

cn P

( |Sn − an|
bn

> ε

)

<∞ for some cn > 0, ε > 0.

Naturally, the statements (a), (b), (c) are related to each other in various ways.
The cases of (a) and (c) where bn = n, an = ESn and the Xj’s are mutually
independent are the ones which have been most intensively studied; a statement
like (b) leads to the classical law of the iterated logarithms, so-called because
in the very important case where the Xj’s are independent and identically
distributed with EXj = 0, EX2

j <∞, (b) holds with an = 0, bn =
√
n log logn

(theorem of Hartmann–Wintner (1941)). For the purposes of the present
discussion, let us recall two classical results concerning (a) and (c) for the case
of independent, identically distributed (i. i. d.) random variables Xj , j ≥ 1.
The first is the theorem of Kolmogorov (1930): if {Xj} is a sequence of
i. i. d. random variables then

lim
n→∞

Sn

n
= 0 a. s. (A.1)

if and only if EXj = 0. The second is a theorem due to Hsu and Robbins

(1947), Erdös (1949): if {Xj} is a sequence of i. i. d. random variables then

∞
∑

n=1

P

(∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> ε

)

<∞ (A.2)

for every ε > 0 if and only if EX2
j < ∞ and EXj = 0. There are, of course,

numerous sharpenings and generalizations of these two theorems but we men-
tion these in particular in order to illustrate the limitations of the method used
by Hausdorff to prove his strong law. It is an immediate corollary of the
easy half of the Borel-Cantelli lemma (see section 3 above) that if {Xj} is any

sequence of real-valued random variables then the validity of (A.2) for every
ε > 0 implies (A.1); this was the strategy used by Hausdorff to obtain his
strong laws. The above-mentioned theorems indicate that this method by itself
could not possibly yield (A.1) under general hypotheses like those of Kolmo-

gorov. Hausdorff’s technique (in section 2 of his Notes, cf. calculations after
theorem IV) consists in first deriving a 4-th moment bound like

E |Sn|4 ≤ C · n2 (A.3)

(C some positive constant) from where (A.2) will follow via the simple (so-
called Markov) inequality:

P

(∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> ε

)

≤ 1

ε4
E

∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

4

≤ C

n2 ε4



(which is equation (17) in Hausdorff’s Notes, section 2). Thus Hausdorff’s
arguments would allow him to prove the strong law (A.1) under the hypotheses

EXj = 0, sup
j

EX4
j <∞

the sequence {Xj} being formed of independent random variables (not necessa-
ry i. i. d.). Hausdorff does not however state this explicitly in the Notes but it
is this argument (which we shall call the 4th-moment argument) that appeared
first in his Grundzüge (pp. 420–421) and later in NL Hausdorff : Kapsel 44
: Fasz. 833 (1916) (printed in this volume, pp. 768–775). The 4th-moment ar-
gument was used, independently, by Cantelli (1917) (cf. [BN 1977] for exact
reference) and has been reutilized by different authors including Hausdorff

himself (cf. NL Hausdorff : Kapsel 34 : Fasz. 372 (1928–31) reprinted in [H
2002], pp. 819–823).

The Borel strong law treated by Hausdorff in his Grundzüge concerned the
special case of Xj = xj− 1

2 , the sequence {xj} being i. i. d. with xj = 0 or 1 with
probability 1

2 . At the end of the proof, Hausdorff remarked (loc. cit. p. 421)
that (in our notation)

lim
n→∞

nθ

(

x1 + · · · + xn

n
− 1

2

)

= lim
n→∞

Sn

nα
= 0 a. s. (A.4)

for any θ < 1
2 (i. e. α = 1 − θ > 1

2 ); recall that here

Sn = X1 + · · · +Xn = (x1 + · · · + xn) − n

2
.

This remark of Hausdorff has been reported by several authors (e. g.Feller

[F 1968], p. 209); however, we have found no indication of any proof of this result
in any of Hausdorff’s papers. It is possible that Hausdorff had imagined
a proof by using moments of the order p where one would first establish that
(for some positive constant Cp)

E |Sn|p ≤ Cp M
p np/2 (A.5)

for Xj ’s bounded by M (|Xj | ≤ M), Xj ’s being independent with EXj = 0.
Then the simple reasoning that

∞
∑

n=1

P

(∣

∣

∣

∣

Sn

nα

∣

∣

∣

∣

> ε

)

≤
∞
∑

n=1

ε−p
E

∣

∣

∣

∣

Sn

nα

∣

∣

∣

∣

p

≤ const.

∞
∑

n=1

n−p(α−1/2) <∞

if p(α − 1/2) > 1 will establish (A.4) just as (A.1) was proved via the 4th-
moment argument above. Inequality (A.5) (at least in the case Xj = xj −
1
2 as above) was within the reach of Hausdorff’s techniques as shown by
Steinhaus (1923) (cf. [BN 1977] for exact reference). Indeed, Marcinkiewicz

and Zygmund (1937) (cf. [M 1964], p. 257) proved that if only the Xj ’s are



independent, EXj = 0, E |Xj |p < ∞, j ≥ 1, p > 1, then (for some positive
constant Cp <∞)

E |Sn|p ≤ Cp E

{

(X2
1 + · · · +X2

n)p/2
}

whence can be derived easily that

E |Sn|p ≤ Cp ·M · np/2

under the sole hypothesis that the Xj ’s are independent and

EXj = 0, sup
j

E |Xj |p = M <∞,

p being a constant ≥ 2; it suffices to use the elementary fact that from Jensen’s
convexity inequality for real numbers, one has

(X2
1 + · · · +X2

n)p/2 ≤ np/2 |X1|p + · · · + |Xn|p
n

, p ≥ 2.

Thus (A.5)-like inequalities can be obtained under various hypotheses (inclu-
ding some which relax even the condition of independence of the Xj ’s con-
siderably) leading to (A.4) via the reasoning indicated above. No such simple
argument would seem to lead to the more refined laws of the iterated logarithms
mentioned before.

The literature around the problems indicated above is immense; a recent
volume by Petrov [P 1995] (cf. also [P 1975]) surveys the case of sums of in-
dependent random variables; a volume by Stout [S 1974] treats more general
sums; Kashin and Saakyan [KaS 1989] report on the case of sums of orthogo-
nal random variables. Several advanced modern text-books devote much space
to these problems (e. g.Chow and Teicher [CT 1988]). Further references can
be found in these volumes.

(ii) In this paragraph, we discuss separately Borel’s proof of his strong law
which left Hausdorff so unconvinced (“principiell ganz unklar“, section 4
(p. 631) of Hausdorff’s Notes). Borel’s original paper containing the proof
(and much other material) is his often cited article Les probabilités dénombrables

et leurs applications arithmétiques, Rendiconti del Circolo Matematico di Pa-
lermo 27 (1909), 247–271. This paper has been analysed in detail by Barone

and Novikoff [BN 1977] (of which Part II apparently never appeared) who
have rightly pointed out all the important flaws in Borel’s work and given
some indications of later improvements, corrections and adjustments due to
others. Here we shall concentrate on its one major weakness which cannot be
repaired by a simple appeal to a more careful use of measure theory. In order
to do thus, we must briefly but precisely recall the point at stake.

Borel’s theorem in question can be formulated as follows:

P

(

lim
n→∞

Sn

n
=

1

2

)

= 1 (A.6)



where Sn = X1 + · · · + Xn, Xi = 0 or 1 with probability 1
2 , i ≥ 1, the Xi’s

being independent. In Borel’s discussion, Xi is realized as the ith digit of the
binary expansion of a number in [0, 1] and P is simply the Lebesgue measure;
this interpretation, however, plays no rôle in Borel’s proof which proceeds as
follows (in our notation): let

pn = P(n− λn

√
n ≤ S2n ≤ n+ λn

√
n), n ≥ 1

where {λn} is any sequence of real numbers such that

0 < λn ↑ ∞, lim
n→∞

λn√
n

= 0 (A.7)

(for example, says Borel, λn = logn). The crucial point in Borel’s proof is
that if qn = 1 − pn then

∞
∑

n=1

qn <∞ (A.8)

Assuming (A.8), the proof of (A.7) is easy and given correctly by Borel by
arguing that (A.8) implies that with probability 1 (again via the easy half of
the Borel-Cantelli lemma)

n− λn

√
n ≤ S2n(ω) ≤ n+ λn

√
n, n ≥ n0 = n0(ω)

whence
1 − λn/

√
n

1 + λn/
√
n
≤ 2n− S2n

S2n
≤ 1 + λn/

√
n

1 − λn/
√
n
, n ≥ n0

which gives, in view of (A.7),

lim
n→∞

S2n

2n
=

1

2
almost surely ;

since |Xi| ≤ 1, this implies

lim
n→∞

Sn

n
=

1

2
almost surely

which is (A.6). The most serious lacuna in Borel’s argument is in the proof
of (A.8); here, Borel assumes with unbelievable negligence that pn is equal to

Θ(λn) =
2√
π

∫ λn

0

e−x2

dx.

In other words, the de Moivre–Laplace limit statement (for a fixed λ > 0)

lim
n→∞

P(n− λ
√
n ≤ S2n ≤ n+ λ

√
n) =

2√
π

∫ λ

0

e−x2

dx = Θ(λ)



is stretched to mean that pn = Θ(λn) even for λn ↑ ∞ in certain ways! It is, of
course, easy to show that

1 − Θ(λn) ≤ 1

λn
√
π
e−λ2

n

so that
∞
∑

n=1

{1 − θ(λn)} <∞ (A.9)

whenever
∞
∑

n=1

1

λn
e−λ2

n <∞ (A.10)

which certainly holds if λn = logn (but not if λn =
√

logn). Note that since,
for λ→ ∞,

1 − Θ(λ) ∼ 1

λ
√
π
e−λ2

the conditions (A.9) and (A.10) on {λn} are equivalent; this remark shows that
for the validity of either of them some more care in the choice of λn ↑ ∞ than
simply demanding (A.7) must be exercised. However, this is a minor point
since there are many possible choices of λn verifying (A.7) and (A.10) e. g.
λn = (logn)α, α > 1/2 or λn = nα, 0 < α < 1/2. The essential difficulty in
carrying out Borel’s proof is in choising {λn} satisfying (A.7) in such a way
that (A.8) holds. If we can show that {λn} can be chosen so that (A.7) and
(A.10) hold and

lim sup
n→∞

qn
1 − Θ(λn)

<∞ (A.11)

then (A.8) will be guaranteed and Borel’s proof will have been completed.
This can be done but the work is laborious. Indeed, it can be shown that if
λn → ∞ in such a way that

λn

n1/6
→ 0 as n→ ∞

then

lim
n→∞

qn
1 − Θ(λn)

= 1 (A.12)

For the special case of binomial probabilities involved here, this is given in
Feller [F 1968], p. 193 and in many other places; this is a very special case
of a more general (so-called “large deviation“) result of Cramér from 1938
([C 1994], vol. II, p. 905). Hence, a choice of {λn} satisfying (A.7), (A.10) and
(A.12) is possible, thus validating Borel’s proof.

The first attempt at justifying Borel’s proof which we have seen is in
Fréchet’s book [Fr 1950] (1st ed. 1937); here, after having stated (p. 231)
that “La démonstration de M. Borel est excessivement brève“, Fréchet goes



on to complete the proof in the way we have indicated above, his main diffi-
cult step being that of arriving at (A.11) (and eventually even to (A.12)) via
some elementary but tedious estimation of binomial probabilities. Fréchet

also points out (ibid. p. 236) a paper of Cramér (1934) which gives the con-
clusion that for any choice of λn ↑ ∞, (A.8) holds if and only if (A.10) holds;
again, Cramér’s result is valid more generally than just in the case of Ber-
noulli probabilities ([C 1994], vol. I, p. 700). This last is again obtained by a
“large deviation“ estimate whose nature we shall explain later in another con-
text (cf. commentary on NL Hausdorff : Kapsel 44 : Fasz. 834 printed in
this volume, p. 776–790). Fréchet also writes out (ibid. p. 239) Hausdorff’s
proof as given in the Grundzüge whose simplicity and clarity we have alrea-
dy indicated. The Fréchet type proof of Borel’s theorem now appears as a
curiosity in some books e. g. [CT 1988], exercises 5 and 6, p. 52.

Barone and Novikoff [BN 1977] rightly conclude that Hausdorff’s 1914
proof is the first complete, correct and explicit proof of Borel’s strong law;
they also aptly indicate (ibid. p. 171) a proof of Faber (1910) and the rela-
ted later independent proof of Rademacher (1918) based on Lebesgue’s
differentiation theorem; however, they correctly point out that Faber was
uncertain of the relationship of his result with that of Borel’s; Radema-

cher mentions Hausdorff’s proof as well as that of Faber in a short sup-
plement to his original paper. [BN 1977] has the reference to Faber’s paper
but not that of Rademacher’s. Rademacher published three influential pa-
pers related to almost everywhere convergence. The paper related to Borel’s
strong law is (1) Zu dem Borelschen Satze über die asymptotische Verteilung der

Ziffern in Dezimalbrüchen, Math. Zeitschrift 2 (1918), 306–311 (in [Ra 1974],
pp. 123–128). The two other papers concern the convergence almost everywhe-
re of orthogonal series: (2) Über die asymptotische Verteilung gewisser konver-

genzerzeugender Faktoren, Math. Zeitschrift 11 (1921), 276–288 (in [Ra 1974],
pp. 196–208); (3) Einige Sätze über Reihen von allgemeinen Orthogonalfunktio-

nen, Math. Annalen 87 (1922), 112–138 (in [Ra 1974], pp. 231–257). This last
introduces the so-called Rademacher functions; we shall see that these were in-
dependently introduced by Hausdorff earlier in an unpublished manuscript
(NL Hausdorff : Kapsel 44 : Fasz. 861, dated 2. 3. 1915); we shall report on
this later in this volume, pp. 757–760.

In conclusion, we note that Borel’s interesting but very incomplete proof
replaced the problem of proving the rather easy strong law (A.6) by the much
more intricate one of the equivalence of the conditions (A.8) and (A.10).

Appendix B
Lindeberg’s condition; Berry-Esseen theorem

(i) The purpose of this appendix is to give exactly what was proved in Lin-

deberg’s 1922 paper to which Hausdorff refers in his Notes. Although the
paper has been cited by many authors in numerous books and articles, none
of them seem to have pointed out Lindeberg’s original formulations of his fa-



mous condition; besides, very few seem to have indicated exactly lindeberg’s
own method of proof. As regards the latter, Hausdorff’s account is very close
to Lindeberg’s; since Hausdorff does not dicuss Lindeberg’s general con-
ditions in any form, it seemed useful to state them in their original form (in
the following paragraph (ii)). In (iii) we indicate the rates of convergence to
the normal law in the central limit theorem known today in order to compare
them with what Hausdorff achieves in his Notes.

We shall use, essentially, Lindeberg’s notations except for transcribing
them, using expectations (E), as indicated before.

(ii) Lindeberg considers a finite sequence of independent real-valued ran-
dom variables X1, X2, . . . , Xn which are square integrable and are such that

EXj = 0, EX2
j = σ2

j , 1 ≤ j ≤ n. (B.1)

His first theorem is stated as follows: suppose further that

n
∑

j=1

σ2
j = 1, E |Xj |3 <∞, 1 ≤ j ≤ n;

then for any ε > 0 there exists a number η > 0 such that
∣

∣

∣

∣

P(X1 + · · · +Xn ≤ x) − 1√
2π

∫ x

−∞

e−t2/2 dt

∣

∣

∣

∣

< ε, x ∈ R (B.2)

whenever
n
∑

j=1

E |Xj |3 < η.

In fact, Lindeberg proves more precisely (by his simple direct method) that

∣

∣

∣

∣

P(X1 + · · · +Xn ≤ x) − 1√
2π

∫ x

−∞

e−t2/2 dt

∣

∣

∣

∣

< 3





n
∑

j=1

E |Xj |3




1/4

(B.3)

(under the hypotheses (B.1) and
∑n

j=1 σ
2
j = 1). The constant 3 in the estimate

(B.3) is just a convenient choice, no attempt having been made to make it any
smaller; of course, (B.3) is the quantitative form of Lindeberg’s first theorem
and is what Hausdorff obtains (see formula (22) of his Notes, section 7)
except for his unprescribed constant µ. Hausdorff’s method is almost the
same as Lindeberg’s. Lindeberg was obviously motivated by Lyapounov’s
theorem to which he refers in his paper; he then obtains a version of (B.2)
without the hypothesis

∑

j σ
2
j = 1 which is just obtained by a rescaling. From

this he derives his second theorem concerning bounded Xi’s which he states as
follows: suppose that |Xi| ≤ dn, 1 ≤ i ≤ n and let r2n = σ2

1 + · · ·+ σ2
n, the Xi’s

still fulfilling (B.1); then, for any ε > 0, there exists η > 0 such that
∣

∣

∣

∣

P(X1 + · · · +Xn ≤ x) − 1

rn
√

2π

∫ x

−∞

exp

(−t2
2r2n

)

dt

∣

∣

∣

∣

< ε, x ∈ R



provided that dn

rn

< η.
Lindeberg considered his second theorem as important (“für die mathema-
tische Statistik unbedingt notwendig“) although it is, of course, derived as an
immediate consequence of his first theorem. Now Lindeberg moves on to the
general case of Xj ’s (independent) satifying just (B.1). Here he states his third
theorem as follows: suppose that

∑n
j=1 σ

2
j = 1 and let

s(x) =

{

|x|3 if |x| < 1
x2 if |x| ≥ 1 ;

then for any ε > 0, there exists a number η > 0 such that (B.2) holds as soon
as

n
∑

j=1

E {s(Xj)} < η.

Here again if we followed Lindeberg’s suggestions (cf. his paper, p. 221) we
would get the following inequality which is a more precise form of his third
theorem:

∣

∣

∣

∣

P(X1 + · · · +Xn ≤ x) − 1√
2π

∫ x

−∞

e−u2/2 du

∣

∣

∣

∣

< 3







n
∑

j=1

E s(Xj)







1/4

(B.4)

Again, the constant 3 on the right hand side above is a mere convenience.
Lindeberg now points out that the function s used in the third theorem
above can be replaced by

sρ(x) =

{

|x|3 if |x| ≤ ρ
ρx2 if |x| > ρ

where ρ is any positive number. More suggestively, he states that his third
theorem can be expressed in other forms; in order to do this let us introduce the
following notation (not in Lindeberg’s paper): for independent real random
variables X1, . . . , Xn satisfying (B.1), write

L1 = L1(X1, . . . , Xn) =
∑n

j=1 E |Xj |3

L2 = L2(X1, . . . , Xn) =
∑n

j=1 E s(Xj)

L3 = L3(X1, . . . , Xn) = 1 −
∫ 1

0 dτ
∑n

j=1 E (|Xj |2; |Xj | ≤ τ)

Under the hypothesis that σ2
1 + · · · + σ2

n = 1, Lindeberg now shows that L3

is small if and only if L2 is small; indeed, it is easily shown that if 0 < ε < 1
then

L2 < ε ⇒ L3 < 2
√
ε

and
L3 < ε ⇒ L2 < 2

√
ε.



Thus, Lindeberg can restate his third theorem as his fourth in the following
form: if independent random variables X1, . . . , Xn satisfy (B.1) and σ2

1 + · · ·+
σ2

n = 1 then for any ε > 0 there exists η > 0 such that (B.2) holds whenever
L3 < η.

By obvious centering and rescaling, Lindeberg now states his general fifth
and last theorem for any square integrable independent real-valued random
variables X1, . . . , Xn with

EXj = bj, Bn = b1 + · · · + bn, E (Xj − bj)
2 = σ2

j ,

n
∑

j=1

σ2
j = r2n.

His final statement for the infinite sequence {Xj} then is equivalent to the
following:

lim
n→∞

P

(

X1 + · · · +Xn −Bn

rn
≤ x

)

=
1√
2π

∫ x

−∞

e−u2/2 du

uniformly in x ∈ R if

lim
n→∞

L3

(

X1 − b1
rn

, . . . ,
Xn − bn
rn

)

= 0 (B.5)

where we have used Lindeberg’s symbols except for using P for probability
and defining L3 using expectation symbol E. If we take Bj = 0, j ≥ 1, then
(B.5) is the same as having

lim
n→∞

1

r2n

∫ 1

0

dτ
n
∑

j=1

E (|Xj |2; |Xj | > τrn) = 0 (B.6)

From (B.6) we obtain the usual (equivalent) Lindeberg condition written as
follows: for any ε > 0,

lim
n→∞

1

r2n

n
∑

j=1

E (|Xj |2; |Xj | > εrn) = 0 (B.7)

It has been pointed out by Chow and Teicher ([CT 1988], pp. 295–296) that
(B.7) (for all ε > 0) is also equivalent to the following: for any ε > 0,

lim
n→∞

1

r2n

n
∑

j=1

E (|Xj |2; |Xj| > εrj) = 0.

In all this it is, of course, tacitly supposed that rn > 0 for some n onwards.
It is surprising that Lindeberg in his elegant paper containing one of the

most general forms of the central limit theorem does not mention its validity
for the simple special case of independent identically distributed real-valued
random variables X1, X2, . . . with EXi = 0, EX2

i = σ2, 0 < σ < ∞; in



this case, his condition (in the form (B.6) or (B.7)) can be verified easily.
This important special case is given in Hausdorff’s Notes under the extra
assumption that E |Xi|3 < ∞; it remained for Lévy to state this extremely
useful theorem in his 1925 book Calcul des probabilités. Lévy’s analysis is
based on characteristic functions but he also adapted Lindeberg’s reasoning
in his own original way. We shall not analyse Lévy’s technique from the point
of view of Lindeberg’s method; suffice it to say that Lévy took good notice of
Lindeberg’s paper as soon as it appeared and went on to his own independent
development leading to stable laws and other central limit theorems. The well-
known book by Gnedenko and Kolmogorov [GK 1954] gives an excellent
description of much of the further work until 1949. We only remark that very
few of the authors present their theorems in the finitary ε − η format which
Lindeberg had adopted; important exceptions are Lévy (cf. his books Calcul

des probabilités (1925) as well as Théorie de l’addition des variables aléatoires

(1937] both referred to in [GK 1954]) and Doob [D 1953].
We now summarize briefly Lindeberg’s method and indicate Hausdorff’s

slight modification of it. Suppose U is the distribution function ofX1+· · ·+Xn,
the Xi’s being independent, real-valued random variables with mean 0 and with
variance of the sum 1; let Φ be the distribution function of the standard normal
law (with mean 0 and variance 1); then Lindeberg establishes the following
estimate:

∣

∣

∣

∣

∫

∞

−∞

f(x− t) dU(t) −
∫

∞

−∞

f(x− t) dΦ(t)

∣

∣

∣

∣

< c k L(X1, . . . , Xn) (B.8)

where L is a suitable functional associated with theXi’s (like L1, L2, L3 above),
c an absolute constant and k is a number which bounds ‖f (3)‖ (‖g‖ being the
supremum norm of g : R → R), f, f ′, f ′′ being also bounded (eventually by
k/24, k/24, k/12). By choosing f suitably, the inequality (B.8) is converted to
an inequality

|U(x) − Φ(x)| < c k L+ c′k−1/3

where c, c′ are absolute constants; by choosing k to be proportional to L−3/4

(essentially minimizing the right hand side of the preceding inequality), one
obtains

|U(x) − Φ(x)| < µL1/4 (B.9)

where µ is a constant which can be calculated from c, c′. The choice of f
in (B.8) is what now-a-days is called the choice of a mollifier. Hausdorff’s
argument is a slight variation which is perhaps pedagogically more convenient;
Hausdorff establishes (B.8) for any C(3)-function f with ‖f (3)‖ ≤ k and
then takes f(x) = γ(x/l), l > 0, where γ is some fixed C(3)-function (explicitly
given) with 0 ≤ γ ≤ 1, γ(x) = 0 if x ≤ 0, γ(x) = 1 if x ≥ 1 with ‖γ(3)‖ ≤ m
(where m can be calculated exactly). From (B.8) one gets

|U(x) − Φ(x)| ≤ cm
L

l3
+

√

2

π
l



by following Hausdorff’s simple argument (the same as lindeberg’s) which
again leads to (B.9) with some absolute constant µ which can, in principle,
be exactly determined. Thus both Hausdorff’s argument as well as that of
Lindeberg are essentially arguments based on the choice of mollifiers; (B.9)
seems to be the best that can be achieved with such methods even if we chose
C∞-mollifiers. Lindeberg’s method has been fruitfully used for vector-valued
random variables as well cf. [PS 2000] (Bentkus, Götze et al pp. 42–50); most
text-books today use Lévy’s method of characteristic functions as in [GK 1954].

Estimates like (B.9) naturally raise questions about the optimal rates of con-
vergence in the central limit theorem. We briefly describe the current state of
affairs in the next section.

(iii) Already Lyapounov had given a good rate of convergence in his work
of 1900–1901; this was improved by Cramér in several papers between 1923–
1937 (see [C 1994] or [GK 1954] for references). Definitive results were obtained
by Berry (1941) and Esseen (1945) (cf. [GK 1954]) which we now describe in
order to compare them with estimates like (B.9) obtained by lindeberg and
Hausdorff. The Berry-Esseen result can be stated as folows: letX1, · · · , Xn

be independent, real-valued random variables with

EXj = 0, EX2
j = σ2

j , E |Xj |3 <∞, 1 ≤ j ≤ n

and let b2n = σ2
1 + · · · + σ2

n, bn > 0, and

L = L(n) =
1

b3n

n
∑

j=1

E |Xj |3 ;

put

Un(x) = P

(

X1 + · · · +Xn

bn
≤ x

)

, Φ(x) =
1√
2π

∫ x

−∞

e−u2/2 du, x ∈ R;

then
sup

x
|Un(x) − Φ(x)| ≤ c L(n) (B.10)

where c is an absolute constant.
If the Xj ’s above are identically distributed with σ2

j = σ2 (σ > 0) and

E |Xj |3 = β then L(n) = ρ n−1/2, ρ = β/σ3 and (B.10) becomes

sup
x

|Un(x) − Φ(x)| ≤ c′ ρ n−1/2 (B.11)

where c′ ≤ c is again an absolute constant.
Much research has been devoted to the determination of c and c′; the best

result seems to be due to Paul van Beek (1972) with

0.40974 ≤ c ≤ 0.7975;



note also the following simple fact:

1√
2π

= 0.39 · · · ≤ c′ ≤ c

where 1/
√

2π comes from the consideration of the special case of the symmetric
binomial distribution; exact references can be found in [P 1975]. An estimate
like (B.10) has also been given under Lindeberg’s general conditions; thus,
let g : R → R be non-negative, even and non-decreasing for x > 0 with x/g(x)
non-decreasing for x > 0; if X1, . . . , Xn are real-valued, independent random
variables with

EXj = 0, EX2
j = σ2

j <∞, E {X2
j g(Xj)} <∞, 1 ≤ j ≤ n

b2n = σ2
1 + · · · + σ2

n > 0

then (with notations as before)

sup
x

|Un(x) − Φ(x)| ≤ A

b2n g(bn)

n
∑

j=1

E {X2
j g(Xj)} (B.12)

where A is an absolute constant (depending only on the choice of g); cf. Petrov

in [PS 2000], p. 5. If

g(x) =

{

|x| if |x| < 1
1 if |x| ≥ 1

then x 7→ x2 g(x), x ∈ R, gives precisely Lindeberg’s function s (defined
above); if bn = 1 then (B.12) becomes

sup
x

|Un(x) − Φ(x)| ≤ AL2(X1, . . . , Xn)

in our notation (given above) which is better then (B.4); the best value of A
does not seem to have been studied.

Note that in Hausdorff’s Notes, instead of (B.10) one obtains the weaker
estimate const ·L1/4(n) and instead of (B.11) (the identically distributed case)
one gets the weaker estimate const ·n−1/8.
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